(本小题满分12分)
如图,在边长为4的菱形中,
.点
分别在边
上,点
与点
不重合,
,
.沿
将
翻折到
的位置,使平面
⊥平面
.
(1)求证:⊥平面
;
(2)当取得最小值时,请解答以下问题:
(i)求四棱锥的体积;
(ii)若点满足
=
(
),试探究:直线
与平面
所成角的大小是否一定大于
?并说明理由.
(本小题满分10分)选修4-1:几何证明选讲
如图,的角平分线AD的延长线交它的外接圆于点E
(I)证明:
(II)若的面积
,求
的大小。
(本小题满分12分)已知函数=
(
为实常数).
(1)若函数在
=1处与
轴相切,求实数
的值.
(2)若存在∈[1,
],使得
≤
成立,求实数
的取值范围.
(本小题满分12分)两个代表队进行乒乓球对抗赛,每队三名队员,
队队员是
,
队队员是
,按以往多次比赛的统计,对阵队员之间的胜负概率如下:
对阵队员 |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.
(1)求的概率分布列;
(2)求,
.
(本小题满分12分)已知函数的定义域为
,且同时满足下列条件:
(1)是奇函数;
(2)在定义域上单调递减;(3)
求
的取值范围.
(本小题满分12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过
检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等
品.
(Ⅰ) 随机选取1件产品,求能够通过检测的概率;
(Ⅱ) 随机选取3件产品,其中一等品的件数记为,求
的分布列;
(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.