利用分解因式计算:.
“读书,点亮未来”,广泛的课外阅读是同学们搜集和汲取知识的一条重要途径.学校图书馆计划购进一批学生喜欢的图书,为了了解学生们对“ 文史类、 科普类、 生活类、 其它”的喜欢程度,随机抽取了部分学生进行问卷调查(每个学生只选其中一类),将所得数据进行分类统计绘制了不完整的统计图表,请根据图中的信息,解答下列问题:
统计表:
频数 |
频率 |
|
历史类 |
50 |
|
科普类 |
90 |
0.45 |
生活类 |
|
0.20 |
其它 |
20 |
0.10 |
合计 |
(1)本次调查的学生共 人;
(2) , ;
(3)补全条形统计图.
先化简,再求值: ,其中 是1、2、3中的一个合适的数.
计算: .
如图所示,抛物线与 轴交于 、 两点,与 轴交于点 ,且 , , ,抛物线的对称轴与直线 交于点 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)若点 是对称轴上的一个动点,是否存在以 、 、 为顶点的三角形与 相似?若存在,求出点 的坐标,若不存在,请说明理由;
(3) 为 的中点,一个动点 从 点出发,先到达 轴上的点 ,再走到抛物线对称轴上的点 ,最后返回到点 .要使动点 走过的路程最短,请找出点 、 的位置,写出坐标,并求出最短路程.
(4)点 是抛物线上位于 轴上方的一点,点 在 轴上,是否存在以点 为直角顶点的等腰 ?若存在,求出点 的坐标,若不存在,请说明理由.
某超市从厂家购进 、 两种型号的水杯,两次购进水杯的情况如表:
进货批次 |
型水杯(个 |
型水杯(个 |
总费用(元 |
一 |
100 |
200 |
8000 |
二 |
200 |
300 |
13000 |
(1)求 、 两种型号的水杯进价各是多少元?
(2)在销售过程中, 型水杯因为物美价廉而更受消费者喜欢.为了增大 型水杯的销售量,超市决定对 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将 型水杯降价多少元时,每天售出 型水杯的利润达到最大?最大利润是多少?
(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个 型水杯可获利10元,售出一个 型水杯可获利9元,超市决定每售出一个 型水杯就为当地"新冠疫情防控"捐 元用于购买防控物资.若 、 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时 为多少?利润为多少?