游客
题文

某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(1)如图一,图二,等边三角形MNP的边长为1,线段AB的长为4,点M与A重合,点N在线段AB上.△MNP沿线段AB按的方向滚动, 直至△MNP中有一个点与点B重合为止,则点P经过的路程为
(2)如图三,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上,点P在正方形内部,正方形MNPQ沿正方形ABCD的边按的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止,则点P经过的最短路程为

(注:以△MNP为例,△MNP沿线段AB按的方向滚动指的是先以顶点N为中心顺时针旋转,当顶点P落在线段AB上时,再以顶点P为中心顺时针旋转,如此继续.多边形沿直线滚动与此类似.)

如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).

(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

如图所示,E是正方形ABCD的边AB上的动点,正方形的边长为4, EF⊥DE交BC于点F.

(1)求证:△ADE ∽△BEF ;
(2)AE=x,BF=y.当x取什么值时,y有最大值? 并求出这个最大值;
(3)已知D、C 、F、E四点在同一个圆上,连接CE、DF,若sin∠CEF =,求此圆直径.

)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.

(1)求证:EF是⊙0的切线;
(2)如果⊙0的半径为9,sin∠ADE=,求AE的长.

一块直角三角形木版的一条直角边AB为3m,面积为6,要把它加工成一个面积最大的正方形桌面,小明打算按图①进行加工,小华准备按图②进行裁料,他们谁的加工方案符合要求?

图①图②

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号