(本小题满分13分)设数列的前
项和为
.已知
,
,
.
(1)写出的值,并求数列
的通项公式;
(2)记为数列
的前
项和,求
;
(3)若数列满足
,
,求数列
的通项公式.
已知向量记
.
(1)若,求
的值;
(2)在△ABC中,角A、B、C的对边分别是、
、
,且满足
,若
,试判断△ABC的形状.
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线
的方程。
已知命题:方程
表示焦点在
轴上的双曲线。命题
曲线
与
轴交于不同的两点,若
为假命题,
为真命题,求实数
的取值范围。
已知椭圆的中心在坐标原点O,左顶点
,离心率
,
为右焦点,过焦点
的直线交椭圆
于
、
两点(不同于点
).
(1)求椭圆的方程;
(2)当的面积
时,求直线PQ的方程;
(3)求的范围.
如图,四棱锥的底面
为一直角梯形,侧面PAD是等边三角形,其中
,
,平面
底面
,
是
的中点.
(1)求证://平面
;
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。