(本题9分)函数
(Ⅰ)判断并证明的奇偶性;
(Ⅱ)求证:在定义域内恒为正。
已知函数的图象经过点
(1,4),曲线在点
处的切线恰好与直线x+9y=0垂直.
(1)求实数的值;
(2)若函数在区间
上单调递增,求
的取值范围
已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=-t2+8t(其中0≤t≤2,t为常数),若直线l1,l2与函数f(x)的图象以及l1、l2、y轴与函数f(x)的图象所围成的封闭图形(阴影部分)如图所示.
(1)求a、b、c的值;
(2)求阴影面积S关于t的函数S(t)的解析式.
在△ABC中,a,b,c为角A,B,C所对的边长,z1=,z2=cos A+
.若复数z1·z2在复平面内对应的点在虚轴上,试判断△ABC的形状.
设函数,其中
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.
在直角坐标系中,以原点
为极点,以
轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
参数方程为
(
为参数),直线
的极坐标方程为
.
(1)写出曲线的普通方程和直线
的直角坐标方程;
(2)求曲线上的点到直线
的最大距离.