(本小题满分12分)已知x∈[-,],f(x)=tan2x+2tan x+2,求f(x)的最大值和最小值,并求出相应的x值.
已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于两点A、B. (1)若|AB|=,求直线l的方程; (2)求|AB|的最小值.
已知抛物线y=x2上存在两个不同的点M、N,关于直线y=-kx+对称,求k的范围.
设抛物线y2=4x截直线y=2x+k所得弦长|AB|=3. (1)求k的值; (2)以弦AB为底边,x轴上的P点为顶点组成的三角形面积为39时,求点P的坐标.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和M的值.
设数列的前项和为,若对所有正整数,都有. 证明是等差数列.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号