如图所示,在半径为的圆形区域内有水平向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率
的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计。
⑴若粒子对准圆心射入,求它在磁场中运动的时间;
⑵若粒子对准圆心射入,且速率为,求它打到感光板上时速度的垂直分量;
⑶若粒子以速度从P点以任意角入射,试证明它离开磁场后均垂直打在感光板上。
一带电粒子无初速度的进入一加速电场A,然后垂直进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),如图所示。已知加速电场A板间电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L,粒子的质量为m,电荷量为q,不计粒子受到的重力及它们之间的相互作用力。求:
(1)粒子穿过A板时速度大小v0;
(2)粒子从偏转电场射出时的侧移量y;
(3)粒子从偏转电场射出时速度的偏转角q
如图所示,M′MNN′为放置在粗糙绝缘水平面上的U型金属框架,MM′和NN′相互平行且足够长,间距l=0.40m,质量M=0.20kg。质量m=0.10kg的导体棒ab垂直于MM′和NN′放在框架上,导体棒与框架的摩擦忽略不计。整个装置处于竖直向下的匀磁场中,磁感应强度B=0.50T。t=0时,垂直于导体棒ab施加一水平向右的恒力F=2.0N,导体棒ab从静止开始运动;当t=t1时,金属框架将要开始运动,此时导体棒的速度v1=6.0m/s;经过一段时间,当t=t2时,导体棒ab的速度v2=12.0m/s;金属框架的速度v3=0.5m/s。在运动过程中,导体棒ab始终与MM′和NN′垂直且接触良好。已知导体棒ab的电阻r=0.30Ω,框架MN部分的阻值R=0.10Ω,其余电阻不计。设框架与水平面间的最大静摩擦力等于滑动摩擦力,g取10m/s2。求:
(1)求动摩擦因数μ;
(2)当t=t2时,求金属框架的加速度;
(3)若在0~t1这段时间内,MN上产生的热量 Q=0.10J,求该过程中导体棒ab位移x的 大小。
如图14所示,在坐标系xoy的第一象限内存在匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。一质量为m、带电荷量为的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限。已知P点坐标为(0,-2),Q点坐标为(4,0),不计粒子重力。求:
(1)求粒子过Q点时速度的大小。
(2)若磁感应强度的大小为一定值B,粒子将以垂直y轴的方向经H点进入第二象限,求B的大小及H点的坐标值;
(3)求粒子在第一象限内运动的时间t。
质量为m的小球A以速率v0向右运动时跟静止的小球B发生碰撞,碰后A球以的速率反向弹回,而B球以
的速率向右运动,求:
(1)小球B的质量mB是多大?
(2)碰撞过程中,小球B对小球A做功W是多大?
如图所示,质量为m的小物块(可视为质点)在粗糙水平桌面上做直线运动,经距离l后以速度υ飞离桌面,最终落在水平地面上。已知υ="3.0" m/s,m=0.10kg,l=1.4m,s=0.90m,物块与桌面间的动摩擦因数μ=0.25,不计空气阻力,重力加速度g取10m/s2。求:
(1)桌面高h的大小;
(2)小物块的初速度大小v0。