某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计.
分组 |
频数 |
频率 |
49.5~59.5 |
10 |
|
59.5~69.5 |
16 |
0.08 |
69.5~79.5 |
|
0.20 |
79.5~89.5 |
62 |
|
89.5~100.5 |
72 |
0.36 |
请你根据不完整的频率分布表,解答下列问题:
(1)补全频数分布直方图;
(2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A”.“B”.“C”.“D”哪一个等级的可能性大?请说明理由.
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF
的顶点都在方格纸的格点上.
(1) 判断△ABC和△DEF是否相似,并说明理由;
(2) P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出1个符合条件的三角形,并在图中连结相应线段,不必说明理由).
解方程: x2+2x-1="0"
(本题12分)如图,已知抛物线y=x2+3与x轴交于点A、B,与直线y=
x+b相交于点B、C,直线y=
x+b与y轴交于点E.
(1)写出直线BC的解析式;
(2)求△ABC的面积;
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动。设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
(本题满分12分) 如图所示,是圆O的一条弦,
,垂足为
,交圆O于点
,点
在圆O上.(1)若
,求
的度数;
(2)若,
,求
的长.
(本题10分)如图,已知E是平行四边形ABCD的BC边延长线上一点,AE交CD于F,CE=BC。
(1)求证:△ECF∽△ADF;
(2)S△ADF: S△CEF的值。