(本小题满分13分)
已知数列{an}的首项a1=" t" >0,,n=1,2,……
(1)若t =,求
是等比数列,并求出{an}的通项公式;
(2)若对一切
都成立,求t的取值范围.
(本小题满分10分)选修4-1:几何证明选讲
如图,四点在同一圆上,
与
的延长线交于点
,点
在
的延长线上.
(1)若,
,求
的值;
(2)若,证明:
.
已知、
为椭圆
的左、右焦点,且点
在椭圆
上.
(1)求椭圆的方程;
(2)过的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
已知函数(
,
,
且
)的图象在
处的切线与
轴平行.
(1)确定实数、
的正、负号;
(2)若函数在区间
上有最大值为
,求
的值.
如图,在三棱锥中,
,
,
为
的中点,
.
(1)求证:平面平面
;
(2)如果三棱锥的体积为
,求
.
2014年索契冬季奥运会,已经在2014年02月07日至02月23日在俄罗斯联邦索契市举行.该市为了缓解交通压力,大力发展公共交通.为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示:
(1)估计这45名乘客中候车时间少于12分钟的人数;
(2)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.