如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,
,BC=1,E为CD的中点,PC与平面ABCD成
角。
(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆:
(
),其焦距为
,若
(
),则称椭圆
为“黄金椭圆”.
(1)求证:在黄金椭圆:
(
)中,
、
、
成等比数列.
(2)黄金椭圆:
(
)的右焦点为
,
为椭圆
上的
任意一点.是否存在过点、
的直线
,使
与
轴的交点
满足
?若存在,求直线
的斜率
;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆:
(
)的左、右
焦点分别是、
,以
、
、
、
为顶点的菱形
的内切圆过焦点
、
.
试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.
本题共有2个小题,第1小题满分8分,第2小题满分8分.
如图,反比例函数(
)的图像过点
和
,点
为该函数图像上一动点,过
分别作
轴、
轴的垂线,垂足为
、
.记四边形
(
为坐标原点)与三角形
的公共部分面积为
.
(1)求关于
的表达式;
(2)求的最大值及此时
的值.
(本题满分1
4分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
在长方体中,
,过
、
、
三点的平面截去长方体的一个角后,得到如图所示的几何体
,且这个几何体的体积为
.
(1)求棱的长;
(2)求点到平面
的距离.
已知关于的实系数一元二次方程
有两个虚根
,
,且
(
为虚
数单位),
,求实数
的值.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列是一个首项为
、公差为
的无穷等差数列.
(1)若,
,
成等比数列,求其公比
.
(2)若,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若,从数列
中取出第1项、第
项(设
)作为一个等比数列的第1项、第2项.求证:当
为大于1的正整数时,该数列为
的无穷等比子数列.