对于函数,若存在x0∈R,使方程
成立,则称x0为
的不动点,已知函数
(a≠0).
(1)当时,求函数
的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;
试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.
若n为大于1的自然数,求证:.
已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),求m的最大值。
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项公式bn;
(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与
logabn+1的大小,并证明你的结论
设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,又如果S2n<3,求q的取值范围