如图,已知是圆
的切线,切点为
,
是圆
的直径,
与圆
交于点
,
,圆
的半径是
,那么
。
某高中在校学生2000人,高一年级与高二年级人数相同并且都比高三年级多1人,为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:
高一年级 |
高二年级 |
高三年级 |
|
跑步 |
![]() |
![]() |
![]() |
跳绳 |
![]() |
![]() |
![]() |
其中,全校参与跳绳的人数占总人数的
,为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取 人.
数列满足
,且对任意的正整数
都有
,则
=.
已知向量,若
是等边三角形,则
的面积为.
已知圆与直线
及
都相切,且圆心在直线
上,则圆
的方程为.
我国齐梁时代的数学家祖暅(公元5-6世纪)提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等.
设:由曲线和直线
,
所围成的平面图形,绕
轴旋转一周所得到的旋转体为
;由同时满足
,
,
,
的点
构成的平面图形,绕
轴旋转一周所得到的旋转体为
.根据祖暅原理等知识,通过考察
可以得到
的体积为