在双曲线中,F1、F2分别为其左右焦点,点P在双曲线上运动,求△PF1F2的重心G的轨迹方程.
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
已知{}是公差不为零的等差数列,
=1,且
,
,
成等比数列.
(Ⅰ)求数列{}的通项;(Ⅱ)求数列{
.
}的前
项和
.
已知关于的不等式
的解集是
。
(1)求实数的值;
(2)若正数满足:
,求
的最大值。
(本题满分14分) 已知
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若在
处有极值,求
的单调递增区间;
(Ⅲ)是否存在实数,使
在区间
的最小值是3,若存在,求出
的值;
若不存在,说明理由.
(本题满分13分) 已知椭圆(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于
两点,求
.