如图所示,正方形线框abcd放在光滑绝缘的水平面上,其边长L=0.5m、质量m=0.5kg、电阻R=0.5Ω,M、N分别为线框ad、bc边的中点.图示两个虚线区域内分别有竖直向下和向上的匀强磁场,磁感应强度均为B=1T,PQ为其分界线.线框从图示位置以速度v0=2m/s匀速向右滑动,当MN与PQ重合时,线框的速度v1=1m/s,此时立刻对线框施加一沿运动方向的水平拉力,使线框匀速运动直至完全进入右侧匀强磁场区域.求:
(1)线框由图示位置运动到MN与PQ重合的过程中磁通量的变化量;
(2)线框运动过程中最大加速度的大小;
(3)线框在图示位置起直至完全进入右侧匀强磁场区域运动过程中,线框中产生的焦耳热.
如图所示,带有小孔的平行板极板A.B间存在匀强电场,电场强度为,极板间距离为L,其右侧有与A.B垂直的平行极板C.D,极板长度为L,C.D板加不变电压。现有一质量为m,带电量为e的电子(重力不计),从A板处由静止释放,经电场加速后通过B板的小孔飞出,经C.D板间的电场偏转后从电场的右侧边界M点飞出电场区域,速度方向与边界夹角为60°,求:
(1)电子在A.B间的运动时间;
(2)C.D间匀强电场的电场强度。
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直,一质量为m,电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹y轴交与M点,已知,
。不计重力,求:
(1)M点与坐标原点O间的距;
(2)粒子从P点运动到M点所用的时间。
如图所示,有一区域足够大的匀强磁场,磁感应强度为B,磁场方向与水平放置的导轨垂直,导轨宽度为L,右端接有电阻R,MN是一根质量为m的金属棒,金属棒与导轨垂直放置,且接触良好,金属棒与导轨电阻均不计,金属棒与导轨间的动摩擦因数为μ,现给金属棒一水平冲量,使它以初速度沿导轨向左运动,已知金属棒在整个运动过程中,通过任一截面的总电荷量为q,求:
(1)金属棒运动的位移s;
(2)金属棒运动过程中回路产生的焦耳热Q;
(3)金属棒运动的时间t
如图所示,在冰面上将质量m=1kg的滑块从A点以初速度推出,滑块与冰面的动摩擦因数为
,滑块滑行L=18m后到达B点时速度为
,现将期间的一段CD用铁刷划擦,使该段的动摩擦因数变为
,再使滑块从A以
的初速度推出后,到达B点的速度为
,取
,求:
(1)初速度的大小;
(2)CD段的长度l;
(3)若AB间用铁刷划擦的CD段的长度不变,要使滑块从A到B的运动时间最长,问铁刷划擦的CD段位于何位置?并求滑块滑行的最长时间(结果保留三位有效数字)。
天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍,利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)