(本题12分)
如图,直线与
轴、
轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从
轴开始以每秒1个长度单位的速度向上平行移动(即EF∥
轴),并且分别与
轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
如图,在直角坐标系中,的两条直角边
分别在
轴的负半轴,
轴的负半轴上,且
.将
绕点
按顺时针方向旋转
,再把所得的像沿
轴正方向平移1个单位,得
.
(1)写出点的坐标;
(2)求点和点
之间的距离.
我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.
①;②
;③
;④
.
计算:
如图①,正方形的顶点
的坐标分别为
,顶点
在第一象限.点
从点
出发,沿正方形按逆时针方向匀速运动,同时,点
从点
出发,沿
轴正方向以相同速度运动.当点
到达点
时,
两点同时停止运动,设运动的时间为
秒.
(1)求正方形的边长.
(2)当点在
边上运动时,
的面积
(平方单位)与时间
(秒)之间的函数图象为抛物线的一部分(如图②所示),求
两点的运动速度.
(3)求(2)中面积(平方单位)与时间
(秒)的函数关系式及面积
取最大值时点
的坐标.
(4)若点保持(2)中的速度不变,则点
沿着
边运动时,
的大小随着时间
的增大而增大;沿着
边运动时,
的大小随着时间
的增大而减小.当点
沿着这两边运动时,使
的点
有 个.
(抛物线的顶点坐标是
.)
小张骑车往返于甲、乙两地,距甲地的路程(千米)与时间
(小时)的函数图象如图所示.
(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时.
(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇3次.请在图中画出小李距甲地的路程(千米)与时间
(小时)的函数的大致图象.
(3)小王与小张同时出发,按相同路线前往乙地,距甲地的路程(千米)与时间
(小时)的函数关系式为
.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.