直线y=2x+3与抛物线y=ax2交于A、B两点,已知点A的横坐标是3,求A、B两点坐标及抛物线的函数关系式.
如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.
解方程组:.
计算:
(1)32﹣|﹣2|﹣(π﹣3)0+;
(2)(1+)÷
.
已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,
(1)求二次函数解析式;
(2)若=
,求k;
(3)若以BC为直径的圆经过原点,求k.
△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.