如图1,在平行四边形ABCD中,AB=1,BD=,∠ABD=90°,E是BD上的一个动点,现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示.
(1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG;
(2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.
(本小题满分13分)已知向量,
,
定义函数=
。
(Ⅰ)求的最小正周期;在所给的坐标系中作出函数
,
∈
的图象
(不要求写出作图过程);
(Ⅱ)若=2,且14≤
≤18,求
的值
选修4—5:不等式证明选讲
已知函数。
(1)解不等式;
(2)若存在使得
成立,求实数
的取值范围。
选修4—4:坐标系与参数方程
已知的极坐标方程为
,
分别为
在直角坐标系中与
轴,
轴
的交点。曲线的参数方程为
(
为参数,且
),
为
的中点,
(1)将,
化为普通方程;
(2)求直线(
为坐标原点)被曲线
所截得弦长。
选修4-1:几何证明选讲
如图,已知是
的外角
的平分线,交
的延长线于点
,延长
交
的外接圆于点
,连结
。
(1)求证:;
(2)求证:;
(3)若是
外接圆的直径,
且,求
的长。
(本小题满分12分)已知函数,其中
为自然对数的底数,
。
(1)设,求函数
的最值;
(2)若对于任意的,都有
成立,
求的取值范围。