如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,D点为O点在斜面上的垂足,OM=ON,带负电的小物体以初速度从M点沿斜面上滑, 到达N点时速度恰好为零,然后又滑回到M点,速度大小变为
。若小物体电荷量保持不变,可视为点电荷
(1)带负电的小物体从M向N运动的过程中电势能如何变化,电场力共做多少功?
(2)N点的高度h为多少?
(3)若物体第一次到达D点时速度为,求物体第二次到达D点时的速度
。
质量m="1" kg的物体,在水平拉力F的作用下,沿粗糙水平面运动;经过位移4m时,拉力F停止作用,运动到位移是8m时物体停止。运动过程中Ek—x的图线如图所示。(g取10m/s2)
(1)物体的初速度为多大?
(2)拉力F的大小为多大?
如图所示,斜劈放在粗糙的水平地面上,它的斜面是光滑的,斜面长为L,倾角为θ,质量为m的小物体由斜面顶端从静止下滑至底端,而斜劈与地面保持相对静止,求
(1)物体下滑的加速度?(a=gsinθ)
(2)斜劈受到水平地面的摩擦力大小和方向?(mgsinθcosθ;向左
18.解:(1)mgsinθ=ma a=gsinθ
我国已经发射绕月球飞行的飞船“嫦娥一号”,不久将实现登月飞行。若月球的半径为R。当飞船在靠近月球表面的圆轨道上飞行时,测得其环绕周期为T,已知万有引力常量为G,根据上述物理量,求月球的质量M和密度。
(进度超前的做12分)如图,斜轨道AB和半径为R半圆轨道BC平滑连接于B点,圆心O在B点的正上方,两个均可视为质点的小球1、2的擀量分别为,小球2静止在最低点B,小球1从距地面某一高度沿斜轨道静止下滑,且于B位置与2相撞,球1和球2的对心碰撞时间极短且无机构能损失,碰后球1和球2的动量大小之比为1:2,方向相同,球2恰能到达C点,不计摩擦及空气阻力,重力加速度为g,求:
(1)两球的质量之比
(2)小球1沿斜轨道静止下滑时的高度h。
(进度未超前的做12分)如图所示,内壁光滑的轨道ABCDEF是由两个半径均为R的半圆轨道和两长度均为L=R直轨道良好对接而成,固定在同一竖直平面内。一质量为m的小球(可视为质点)始终能沿轨道ABCDEF的内壁运动,已知B、E为轨道的最高和最低点,重力加速度为,求:
(1)若小球恰能过B点,此时小球的速度大小
(2)小球经过E、B两点时对轨道的压力差。