已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连结MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连结OP.
①若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
②试问在抛物线的对称轴上是否存在一点T,使得的值最大.若存在,求出T点坐标;若不存在,请说明理由.
(1)用配方法解方程:;
(2)用公式法解方程:.
抛物线与
轴交于
两点,则
的长为.
如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,点F在边AC上,连接DF.
(1)求证:AC=AE;
(2)若AC=8,AB=10,且△ABC的面积等于24,求DE的长;
(3)若CF=BE,直接写出线段AB,AF,EB的数量关系:.
观察下列等式:
1×3+1=22
3×5+1=42
5×7+1=62
.......................................
请你按照上述三个等式的规律写出第④个、第⑤个等式;
请猜想,第n个等式(n为正整数)应表示为;
证明你猜想的结论.
如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.
(1)若AB=7,AC=5,求△ADE的周长;
(2)若∠ABC=∠ACB,AC=10,直接写出图中所有的等腰三角形并求△ADE的周长.