已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动.
(1) 求梯形ODPC的面积S与时间t的函数关系式;
(2) 在线段PB上是否存在一点Q,使得ODQP为菱形.若存在求t值;若不存在,说明理由;
(3) 当△OPD为等腰三角形时,直接写出点P的坐标.
已知一个面积为S的等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图示)。当n=8时,共向外做出了18个
小等边三角形;当n=k时,共向外做出了3(k-2)个小等边三角形,这些小等边角形的面积和是3(k-2)k2S(用含k的式子表示)。
如图,已知的顶点
,
,
是坐标原点.将
绕点
按逆时针旋转90°得到
.
写出
两点的坐标;
求过
三点的抛物线的解析式,并求此抛物线的顶点
的坐标;
在线段
上是否存在点
使得
?若存在,请求出点
的坐标;若不存在,请说明理由.
如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,
求证:AB·AC=AE·AD.
如图,D,E分别是△ABC的AB,AC边上的点,且DE∥BC,已知AD︰DB=1︰3, DE=2cm,求BC的长.
若△ADE的面积为1.5cm2,求梯形DBCE的面积.
一条排水管的截面如右图所示,截面中有水部分弓形的弦AB为cm, 弓形的高为6cm.
求截面⊙O的半径.
求截面中的劣弧AB的长.