(本小题满分12分)
某市的教育研究机构对全市高三学生进行综合素质 测试,随机抽取了部分学生的成绩,得到如图所示的成绩 频率分布直方图.
(I )估计全市学生综合素质成绩的平均值;
(II)若评定成绩不低于8o分为优秀.视频率为概率,从 全市学生中任选3名学生(看作有放回的抽样),变量表示 3名学生中成绩优秀的人数,求变量
的分布列及期望
)
解关于的不等式:
解不等式
(1)已知关于x的不等式(a+b)x+(2a-3b)<0的解集为,求关于x的不等式(a-3b)x+(b-2a)>0的解集.
(2)
(10分) 已知数列{an}的前n项和Sn=10n-n2,(n∈N*).
(1)求a1和an;
(2)记bn=|an|,求数列{bn}的前n项和.
已知函数(
)
(Ⅰ)讨论的单调性;
(Ⅱ)当时,设
,若存在
,
,使
,
求实数的取值范围。
为自然对数的底数,
已知椭圆上的动点到焦点距离的最小值为
。以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆
相交于
两点,
为椭圆上一点, 且满足
(
为坐标原点)。当
时,求实数
的值.