游客
题文

(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(I)求曲线C1的普通方程;
(II)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

.已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.
(1)求椭圆C的方程;
(2)P(2,3),Q(2,-3)是椭圆上两点,A、B是椭圆上位于直线PQ两侧的两动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

如图所示,三棱柱ABC—A1B1C1中,AB=AC=AA1=2,面ABC1上面AAlClC,∠AAlCl=∠BAC1=600,AC1与A1C相交于0,E为BC的中点.
(1)求证.OE∥面AAl BlB;
(2)求证:B0⊥面AA1C1C;
(3)求三棱锥C—AEC1的体积.

已知a为常数,且a≠O,函数f(x)=ax+axlnx+2.
(1)求函数f(x)的单调区间;
(2)当a=1时,若直线y=t与曲线y=f(x)(z∈[]有公共点,求t的取值范围,

某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.


员工号
1
2
3
4
甲组
件数
9
11
1l
9

员工号
1
2
3
4
乙组
件数
b 9
8
10
9

(1)用茎叶图表示两组的生产情况;
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差,其中为x1,x2,…,xn的平均数)

在△ABC中,角A,B,C所对的边分别为a,b,c,角A,B,C依次成等差数列.
(1)若b2=ac,试判断△ABC的形状;
(2)若△ABC为钝角三角形,且a>c,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号