游客
题文

如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.

(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,在△ ABC中,内角 ABC所对的边分别为 abc

(1)若 a=6, b=8, c=12,请直接写出∠ A与∠ B的和与∠ C的大小关系;

(2)求证:△ ABC的内角和等于180°;

(3)若 a a - b + c = 1 2 ( a + b + c ) c ,求证:△ ABC是直角三角形.

如图,抛物线 yax 2+ bx﹣2( a≠0)与 x轴交于 A(﹣3,0), B(1,0)两点,与 y轴交于点 C,直线 y=﹣ x与该抛物线交于 EF两点.

(1)求抛物线的解析式.

(2) P是直线 EF下方抛物线上的一个动点,作 PHEF于点 H,求 PH的最大值.

(3)以点 C为圆心,1为半径作圆,⊙ C上是否存在点 M,使得△ BCM是以 CM为直角边的直角三角形?若存在,直接写出 M点坐标;若不存在,说明理由.

(1)【探究发现】

如图1,∠ EOF的顶点 O在正方形 ABCD两条对角线的交点处,∠ EOF=90°,将∠ EOF绕点 O旋转,旋转过程中,∠ EOF的两边分别与正方形 ABCD的边 BCCD交于点 E和点 F(点 F与点 CD不重合).则 CECFBC之间满足的数量关系是    

(2)【类比应用】

如图2,若将(1)中的"正方形 ABCD"改为"∠ BCD=120°的菱形 ABCD",其他条件不变,当∠ EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.

(3)【拓展延伸】

如图3,∠ BOD=120°, OD 3 4 OB=4, OA平分∠ BODAB 13 ,且 OB>2 OA,点 COB上一点,∠ CAD=60°,求 OC的长.

某工厂制作 AB两种手工艺品, B每件获利比 A多105元,获利30元的 A与获利240元的 B数量相等.

(1)制作一件 A和一件 B分别获利多少元?

(2)工厂安排65人制作 AB两种手工艺品,每人每天制作2件 A或1件 B.现在在不增加工人的情况下,增加制作 C.已知每人每天可制作1件 C(每人每天只能制作一种手工艺品),要求每天制作 AC两种手工艺品的数量相等.设每天安排 x人制作 By人制作 A,写出 yx之间的函数关系式.

(3)在(1)(2)的条件下,每天制作 B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知 C每件获利30元,求每天制作三种手工艺品可获得的总利润 W(元)的最大值及相应 x的值.

如图, AB是⊙ O的直径,弦 CDAB,垂足为 H,连接 AC.过 BD 上一点 EEGACCD的延长线于点 G,连接 AECD于点 F,且 EGFG

(1)求证: EG是⊙ O的切线;

(2)延长 ABGE的延长线于点 M,若 AH=2, CH=2 2 ,求 OM的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号