(本题满分16分)
如图,开发商欲对边长为的正方形
地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路
(点
分别在
上),根据规划要求
的周长为
.
(1)设,求证:
;
(2)欲使的面积最小,试确定点
的位置.
已知函数的图象过点
.
(1)求实数的值;
(2)求函数的最小正周期及最大值.
已知椭圆的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹
的方程;
(2)在曲线上有四个不同的点
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
已知函数(
)
(1)若在点
处的切线方程为
,求
的解析式及单调递减区间;
(2)若在
上存在极值点,求实数
的取值范围.
已知数列的前
项和
,数列
满足
.
(1)求数列的通项
;
(2)求数列的通项
;
(3)若,求数列
的前
项和
.
如图,已知为平行四边形,
,
,
,点
在
上,
,
,
与
相交于
.现将四边形
沿
折起,使点
在平面
上的射影恰在直线
上.
(1)求证:平面
;
(2)求折后直线与平面
所成角的余弦值.