(本小题14分) 已知函数f(x)=ax3+bx2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取极值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤2;
(3)求证:曲线y=f(x)上不存在两个不同的点A,B,使过A, B两点的切线都垂直于直线AB。
如图,已知四棱锥中,底面
是直角梯形,
,
,
,
,
平面
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)若M是PC的中点,求三棱锥M—ACD的体积.
已知函数(
)在
时有极值,其图象在点
处的切线与直线
平行。
(1)求m,n的值; (2)求函数的单调区间。
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
(本小题满分14分)设函数,
的两个极值点为
,线段
的中点为
.
(1) 如果函数为奇函数,求实数
的值;当
时,求函数
图象的对称中心;
(2) 如果点在第四象限,求实数
的范围;
(3) 证明:点也在函数
的图象上,且
为函数
图象的对称中心.