游客
题文

阅读材料,解答问题:
为解方程 (x2-1)2-5(x2-1)+4=0,我们可以将x2-l看作一个整体,然后设x2-l=y,那么原方程可化为y2-5y+4=0①,解得y1 =1,y2=4.当y1=l时, x2-l=1.所以x2 =2.所以x=±;当y=4时,x2-1=4.所以x2 =5.所以x=±,故原方程的解为x1=,x2=-,x3=,x4=;上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.请利用以上知识解方程:x4-x2-6=0.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题10分)已知抛物线
(1)求它的对称轴与轴交点的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴的交点为,与轴的交点为,若=90°,求此时抛物线的解析式;
(3)若点)在抛物线上,则称点为抛物线的不动点.将抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线上,请说明理由.

(本小题10分)
如图①,将两个完全相同的三角形纸片重合放置,其中90°,30°,

(1)操作发现
如图②,固定△,将△绕点旋转,当点恰好落在边上时,m]
=°,旋转角α=°(0<α<90),线段的位置关系是
②设△的面积为,△的面积为,则的数量关系是
(2)猜想论证
当△绕点旋转到图③所示的位置时,小明猜想(Ⅰ)中的数量关系仍然成立,并尝试分别作出了△和△边上的高,请你证明小明的猜想;

(3)拓展探究
如图④,60°,平分于点.若在射线上存在点,使,请直接写出相应的的长.

(本小题10分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.

(本小题10分)如图,两座建筑物的水平距离为30m,从点测得点的俯角为35°,测得点的俯角为43°,求这两座建筑物的高度(结果保留小数点后1 位,参考数据).

(本小题10分)已知AB,BC,CD分别与⊙相切于E,F,G三点,且AB∥CD,连接OB,OC.
(1)如图①,求∠BOC的度数;
(2)如图②,延长CO交⊙O于点M,过点M做MN∥OB交CD于点N,当OB=6,OC=8时,求⊙的半径及MN的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号