(本小题满分12分)
已知函数,(Ⅰ)确定函数
的单调增区间;(Ⅱ)当函数
取得最大值时,求自变量
的集合.
在中,角A,B,C的对边分别为a,b,c.已知向量
,
,
.
(Ⅰ) 求cosA的值;
(Ⅱ) 若,
, 求c的值.
已知函数
(Ⅰ)若时,函数
在其定义域上是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设函数的最小值;
(Ⅲ)设函数的图象C1与函数
的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
如图,椭圆:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于S、T两点,与抛物线交于C、D两点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
已知各项均为正数的数列中,
是数列
的前
项和,对任意
,有
.函数
,数列
的首项
(Ⅰ)求数列的通项公式;
(Ⅱ)令求证:
是等比数列并求
通项公式;
(Ⅲ)令,
,求数列
的前n项和
.
如图,四棱柱中,
平面
,底面
是边长为1的正方形,侧棱
,
(Ⅰ)证明:;
(Ⅱ)若棱上存在一点
,使得
,
当二面角的大小为
时,求实数
的值.