游客
题文

已知P为半圆C:为参数,)上的点,点A的坐标为(1,0),
O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为
(Ⅰ)以O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(Ⅱ)求直线AM的参数方程。

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

假设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都表露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性.求:
(1)一个孩子有显性基因决定的特征的概率是多少?
(2)两个孩子中至少有一个有显性基因决定的特征的概率是多少?

某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:
(1)射中10环或9环的概率;
(2)少于7环的概率.

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(1)求甲获得这次比赛胜利的概率;
(2)求经过5局比赛,比赛结束的概率

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试时间间隔恰当,每次测试通过与否互相独立.
(1)求该学生考上大学的概率;
(2)求该学生经过4次测试考上大学的概率.

设M点的坐标为(x,y).
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中取随机取一个数作为y,求M点落在y轴的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:
,所表示的平面区域内的概率

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号