如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数,使
,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;
(Ⅲ)过的直线与轨迹E交于P、Q两点,求
面积的最大值.
已知椭圆的两焦点与短轴的一个端点连结成等腰直角三角形,直线
是抛物线
的一条切线。
(1)求椭圆方程;
(2)直线交椭圆
于A、B两点,若点P满足
(O为坐标原点), 判断点P是否在椭圆
上,并说明理由。
已知定义域为的单调函数
是奇函数,当
时,
.
(1)求的解析式;
(2)若对任意的,不等式
恒成立,求实数
的取值范围.
某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:
①;②
;③
.(以上三式中、
均为常数,且
)
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)
(2)若,
,求出所选函数
的解析式(注:函数定义域是
.其中
表示8月1日,
表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
设全集为实数集R,,
,
.
(1)求及
;(2)如果
,求
的取值范围.
(1)解不等式(2)计算