(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中,且
,
分别为
、
、
的中点
(1)求证:PB//平面EFG
(2)求直线PA与平面EFG所成角的大小
(3)在直线CD上是否存在一点Q,使二面角的大小为
?若存在,求出CQ的长;若不存在,请说明理由。
如图,在三棱柱中,侧面
为菱形, 且
,
,
是
的中点.
(1)求证:平面平面
;
(2)求证:∥平面
.
设函数.
(1)求的最小正周期和值域;
(2)在锐角△中,角
的对边分别为
,若
且
,
,求
和
.
选修4-5:不等式选讲
已知,
.
(1)求的最小值;
(2)证明:.
选修4—4:坐标系与参数方程
在直角坐标系中,圆
的参数方程
为参数).以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是
,射线
与圆
的交点为
,与直
线的交点为
,求线段
的长.
(本小题满分10分)选修4-1:几何证明选讲
如图,四点在同一圆上,
与
的延长线交于点
,点
在
的延长线上.
(1)若,
,求
的值;
(2)若,证明:
.