如图,D、E分别是AC,AB上的点,∠ADE=∠B,AG⊥BC于点G,AF⊥DE于点F.若AD=3,AB=5,求:
(1);
(2)△ADE与△ABC的周长之比;
(3)△ADE与△ABC的面积之比.
先化简,再求值,其中
。
解不等式组并把解集在数轴上表示出来。
某工程机械厂根据市场需求,计划生产A、B两种型号的大型运输机械共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号的大型运输机械,所生产的此两型大型运输机械可全部售出,此两型大型运输机械生产成本和售价如下表:
型号 |
A |
B |
成本(万元/台) |
200 |
240 |
售价(万元/台) |
250 |
300 |
该厂对这两型大型运输机械有哪几种生产方案?
该厂如何生产能获得最大利润?
根据市场调查,每台B型大型运输机械的售价不会改变,每台A型大型运输机械的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)
如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.求证:DE是⊙O的切线;
若DE=3,⊙O的半径为5,求BF的长.
多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百慕大三角.根据图中标出的百慕大三角的位置及相关数据计算:∠BAC的度数;
百慕大三角的面积.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)