如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4
,求sinB的值.
如图,在平面直角坐标系中,二次函数 的图象经过平行四边形 的顶点 , 轴,垂足为点 .点 在 轴正半轴上,点 在 轴负半轴上,点 在 轴正半轴上,且 .
(1)求二次函数的表达式,并判断点 是否在该函数图象上;
(2)点 是线段 上一点,在线段 下方作 .
①当点 运动时,使 的一边 始终过点 ,另一边 交射线 于点 ,(不含点 与 重合的情形)设 , ,求 关于 的函数关系式,并求出 的取值范围.
②当 时,将 绕点 旋转,一条边 交线段 于点 ,另一条边 交线段 于点 ,连接 ,以 为直径作 ,设圆心 的坐标为 ,求 与 之间的函数关系式,并直接写出点 从点 运动到点 时圆心 运动的路径长.
如图,在 中, ,点 从点 向点 运动,点 从点 沿射线 方向运动,且 ,连接 交 于 .
(1)如图1,当 时,求证: ;
(2)如图2,当 时,① , ,则 ;
②过点 作 于点 ,探究线段 , , 之间的数量关系,直接写出结论,不需证明.
某手工编织厂生产一种旅游纪念品,现有60名工人进行手工编织(每人编织的效率相同),2天后抽出10名工人执行其他任务,其余工人继续编织生产;2天后从编织的工人中再抽出10名进行销售(每人每天的销售量相同).已知每人每天的销售量是编织量的5倍,下图是产品库存量 (件 与生产时间 (天 之间的函数关系图象.
(1)解释点 的实际意义;
(2)求每人每天的编织量和销售量;
(3)求 段所在的直线的函数表达式,并求出多少天后剩余库存量低于生产前的库存量.
如图,在 中, ,以 为直径的 交 于点 ,且点 是 的中点,连接 交 于点 ,连接 , .
(1)求证: ;
(2)若 , ,求 的长.
如图,这是一座一侧有缓步台的过街天桥示意图.已知桥面 长为 ,与水平面的垂直距离为 ,桥面 长为 ,与水平面的垂直距离为 .斜坡 , 与水平面的夹角分别为 , ,斜坡 的坡度(即 为 .求天桥跨度 的长.
参考数据: , ,