(本题12分)△ABC在直角坐标系中的位置如图所示,直线l经过点(-1,0),并且与y轴平行.
(1)①将△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,在图中画出△A1B1C1;
②求出由点C运动到点C1所经过的路径的长.
(2)①△A2B2C2与△ABC关于直线l对称,画出△A2B2C2,并写出△A2B2C2三个顶点的坐标;
②观察△ABC与△A2B2C2对应点坐标之间的关系,写出直角坐标系中任意一点P(a,b)关于原点O的对称点M的坐标:____ ______.
先化简,再求值:(1+)•
,其中x=
+1.
如图,已知AB是⊙O的直径,AB=8, 点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.
(1)若,求∠F的度数;
(2)设写出
与
之间的函数解析式,并写出自变量取值范围;
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.
如果有两点到一条直线的距离相等,那么称这条直线为 “两点的等距线”.
|
宁波某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
进价(元/千克) |
售价(元/千克) |
|
甲种 |
5 |
8 |
乙种 |
9 |
13 |
(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.
(1)求证:EB=EC;
(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.