(本小题共12分)
已知△ABC的角A,B,C的对边依次为a,b,c,若满足,
(1)求∠C大小;
(2)若c=2,且△ABC为锐角三角形,求a+b取值范围。
设函数
(1)若函数在x=1处与直线
相切.
①求实数,
的值;②求函数
在
上的最大值.
(2)当时,若不等式
对所有的
都成立,求实数
的取值范围.
已知椭圆的左焦点F为圆
的圆心,且椭圆上的点到点F的距离最小值为
。
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(
),证明:
为定值。
在如图的多面体中,⊥平面
,
,
,
,
,
,
,
是
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:;
从某节能灯生产在线随机抽取100件产品进行寿命试验,按连续使用时间(单位:天)共分5组,得到频率分布直方图如图.
(I)以分组的中点资料作为平均数据,用样本估计该生产线所生产的节能灯的预期连续使用寿命;
(II)为了分析使用寿命差异较大的产品,从使用寿命低于200天和高于350天的产品中用分层抽样的方法共抽取6件,求样品A被抽到的概率。
已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明…
.