如图,已知抛物线C1:的顶点为P, 与x轴相交于A、B两点(点A在点B的左侧),点B 的横坐标是1.
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物 线C2向右平移,平移后的抛物线记为C3,抛物线
C3 的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
如图1,已知点D在A上,△ABC和△ADE都是等腰直角三角形,点M为BC的中点
(1)求证:△BMD为等腰直角三角形.
(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.
(3)将△ADE绕点A任意旋转一定的角度,如图3中的“△BMD为等腰直角三角形”是否均成立?说明理由.
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.
甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;
(2)随机选取2名同学,其中有乙同学.
若n>0,关于x的方程x2﹣(m﹣2n)x+mn=0有两个相等的正实数根,求
的值.