(本题9分)如图,对称轴为x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式;
(2)设点E(,
)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与
之间的函数关系式,并写出自变量
的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
如图, ,反比例函数 的图象过点 ,反比例函数 的图象过点 ,且 轴.
(1)求 和 的值;
(2)过点 作 ,交 轴于点 ,交 轴于点 ,交双曲线 于另一点 ,求 的面积.
某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取 进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:
运动项目 |
频数(人数) |
羽毛球 |
30 |
篮球 |
a |
乒乓球 |
36 |
排球 |
b |
足球 |
12 |
请根据以上图表信息解答下列问题:
(1)频数分布表中的a= ,b= ;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为 度;
(3)全校有多少名学生选择参加乒乓球运动?
如图,在矩形 中,对角线相交于点 , 为 的内切圆,切点分别为 , , , , .
(1)求 , ;
(2)点 从点 出发,沿线段 向点 以每秒3个单位长度的速度运动,当点 运动到点 时停止,过点 作 交 于点 ,设运动时间为 秒.
①将 沿 翻折得△ ,是否存在时刻 ,使点 恰好落在边 上?若存在,求 的值;若不存在,请说明理由;
②若点 为线段 上的动点,当 为正三角形时,求 的值.
如图,抛物线过点 和 ,顶点为 ,直线 与抛物线的对称轴 的交点为 , ,平行于 轴的直线 与抛物线交于点 ,与直线 交于点 ,点 的横坐标为 ,四边形 为平行四边形.
(1)求点 的坐标及抛物线的解析式;
(2)若点 为抛物线上的动点,且在直线 上方,当 面积最大时,求点 的坐标及 面积的最大值;
(3)在抛物线的对称轴上取一点 ,同时在抛物线上取一点 ,使以 为一边且以 , , , 为顶点的四边形为平行四边形,求点 和点 的坐标.
如图,在平面直角坐标系 中,一次函数的图象与反比例函数 的图象在第二象限交于 , 两点.
(1)当 时,求一次函数的解析式;
(2)若点 在 轴上,满足 ,且 ,求反比例函数的解析式.