如图所示,在平面直角坐标系中,一次函数 与反比例函数 的图象交于第二、四象限 、 两点,过点 作 轴于 , , ,且点 的坐标为 .
(1)求一次函数与反比例函数的解析式;
(2) 是 轴上一点,且 是等腰三角形,请直接写出所有符合条件的 点坐标.
已知关于 的一元二次方程 的两实数根 , 满足 ,求 的取值范围.
如图,在 中, , 分别是 , 上的点,且 , .求证:四边形 是菱形.
如图,对称轴为直线 的抛物线 与 轴交于 , 、 , 两点,与 轴交于 点,且 .
(1)求抛物线的解析式;
(2)抛物线顶点为 ,直线 交 轴于 点;
①设点 为线段 上一点(点 不与 、 两点重合),过点 作 轴的垂线与抛物线交于点 ,求 面积的最大值;
②在线段 上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在 中, , , .动点 从 点出发,沿 方向以每秒5个单位长度的速度向 点匀速运动,动点 从 点同时出发,以相同的速度沿 方向向 点匀速运动,当点 运动到 点时, 、 两点同时停止运动,以 为边作正 、 、 按逆时针排序),以 为边在 上方作正 ,设点 运动时间为 秒.
(1)求 的值;
(2)当 与 的面积满足 时,求 的值;
(3)当 为何值时, 的某个顶点 点除外)落在 的边上.