设二次函数满足下列条件: ①当时, 的最小值为0,且恒成立; ②当时,恒成立.(I)求的值;(Ⅱ)求的解析式;(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立
在第一象限,且是椭圆上的一点,△的内切圆半径是,求的坐标
已知为椭圆的左右焦点,抛物线以为顶点,为焦点,设为椭圆与抛物线的一个交点,椭圆离心率为,且,求的值
在棱长为的正方体中,是的中点,若都在上 且,是上的点,求四面体的体积
平面直角坐标系中,直线:,,,是上的两动点,且,求使得四边形周长最小时两点的坐标及此时的最小周长
双曲线一支上有不同三点,,与焦点的距离成等差数列,中垂线经过定点的坐标
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号