(1)小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装。为了缓解资金压力,小张决定打折销售。若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元。
①请你算一算每件服装的标价是多少元?
②为了尽快减少库存,又要保证不亏本,请你告诉小张最多能打几折。
(2)小张认真总结了前一次的教训,进行了详细的市场调查后第二次进货500件,按第一次的标价销售了300件后,剩下的进行甩卖,为了尽快减少库存,又要保证盈利两万元钱,请你告诉小张最多能打几折。
甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了h;
(2)求线段DE对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.
如图,在矩形ABCD中,点E在AD上,EC平分∠BED.
(1)△BEC是否为等腰三角形?为什么?
(2)若AB=1,∠ABE=45°,求BC的长.
已知一次函数(
)图象过点(0, 2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.
扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:
(1)这次被调查的学生共有人.
(2)请你将统计图1补充完整.
(3)统计图2中D项目对应的扇形的圆心角是度.
(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.
图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个四边形ABCD.
要求:四边形ABCD的顶点D在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.