(1)先化简,再求值,其中
满足
;
(2)已知多项式,其中
,小马在计算
时,由于粗心把
看成了
求得结果为
,请你帮小马算出
的正确结果。
如图1,抛物线 与 轴交于 , 两点,过点 的直线 分别与 轴及抛物线交于点 , .
(1)求直线和抛物线的表达式;
(2)动点 从点 出发,在 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 秒,当 为何值时, 为直角三角形?请直接写出所有满足条件的 的值;
(3)如图2,将直线 沿 轴向下平移4个单位后,与 轴, 轴分别交于 , 两点,在抛物线的对称轴上是否存在点 ,在直线 上是否存在点 ,使 的值最小?若存在,求出其最小值及点 , 的坐标;若不存在,请说明理由.
【问题解决】
一节数学课上,老师提出了这样一个问题:如图1,点 是正方形 内一点, , , .你能求出 的度数吗?
小明通过观察、分析、思考,形成了如下思路:
思路一:将 绕点 逆时针旋转 ,得到△ ,连接 ,求出 的度数;
思路二:将 绕点 顺时针旋转 ,得到△ ,连接 ,求出 的度数.
请参考小明的思路,任选一种写出完整的解答过程.
【类比探究】
如图2,若点 是正方形 外一点, , , ,求 的度数.
如图,已知 , 分别为 的边 , 上两点,点 , , 在 上,点 , 在 上. 为 上一点,连接 并延长交 的延长线于点 ,交 于点 .
(1)若 为 ,请将 用含 的代数式表示;
(2)若 ,请说明当 为多少度时,直线 为 的切线;
(3)在(2)的条件下,若 ,求 的值.
为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为 , 两种不同款型,其中 型车单价400元, 型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放 , 两种款型的单车共100辆,总价值36800元.试问本次试点投放的 型车与 型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中 , 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有 型车与 型车各多少辆?
汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路 ,其间设有区间测速,所有车辆限速40千米 小时.数学实践活动小组设计了如下活动:在 上确定 , 两点,并在 路段进行区间测速.在 外取一点 ,作 ,垂足为点 .测得 米, , .上午9时测得一汽车从点 到点 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据: , , , , ,