如图1,二次函数的图象为抛物线,交x轴于A、B两点,交y轴于C点.其中AC=
,BC=
,
.
(1)求二次函数的解析式;
(2)若P点为抛物线上一动点且在x轴下方运动,当以P为圆心,1为半径的⊙P与直线BC相切时,求出符合条件的P点横坐标;
(3)如图2,若点E从点A出发,以每秒3个单位的速度沿着AB向点B匀速运动,点F从点A出发,以每秒个单位的速度沿着AC向点C匀速运动.两点同时出发,当其中一点到达终点时,另一点也随之停止运动.过点E作AB的垂线
交抛物线于点E′,作点F关于直线
的对称点F′.设点E的运动时间为t(s),点F′ 能恰好在抛物线吗?若能,请直接写出t的值;若不能,请说明理由.
图1 图2
在平面直角坐标系中,对于任意三点
、
、
的“矩面积”,给出如下定义:“水平底”
:任意两点横坐标差的最大值,“铅垂高”
:任意两点纵坐标差的最大值,则“矩面积”
.
例如:三点坐标分别为,
,
,则“水平底”
,“铅垂高”
,“矩面积”
.
(1)已知点,
,
.
①若、
、
三点的“矩面积”为
,求点
的坐标;
②、
、
三点的“矩面积”的最小值为
(2)已知点,
,
,其中
.若
、
、
三点的“矩面积”的为8,求
的取值范围;
如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动
点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.
数学兴趣小组测量校园内旗杆的高度,有以下两种方案:
方案一:小明在地面直上立一根标杆EF,沿着直线BF后退到点D,使眼睛C、标杆的顶点E 、旗杆的
顶点A在同一直线上(如图1).测量:人与标杆的距离DF=1m,人与旗杆的距离DB=16m,人的目高
和标杆的高度差EG=0.9m,人的高度CD=1.6m.
方案二:小聪在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因
旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙
上的影高为2米(如图2).
请你结合上述两个方案,分别画出符合题意的示意图,并求出旗杆的高度.
如图,△ABC是等边三角形,D、E在BC边所在的直线上,且BC2=BD•CE.
(1)求∠DAE的度数
(2)求证:AD2=DB•DE
设函数(k是常数).
(1)当k=1和k=2时的函数和
的图像如图所示,请你在同一坐标系中画出k=3时函数
的图像;
(2)根据图像,写出你发现的两条结论;
(3)将函数的图像向左平移2个单位,再向下平移4个单位,得到函数
的图像。请写出函数
的解析式,回答自变量x取何值时,函数
的最小值是多少?