数学兴趣小组测量校园内旗杆的高度,有以下两种方案:
方案一:小明在地面直上立一根标杆EF,沿着直线BF后退到点D,使眼睛C、标杆的顶点E 、旗杆的
顶点A在同一直线上(如图1).测量:人与标杆的距离DF=1m,人与旗杆的距离DB=16m,人的目高
和标杆的高度差EG=0.9m,人的高度CD=1.6m.
方案二:小聪在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因
旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙
上的影高为2米(如图2).
请你结合上述两个方案,分别画出符合题意的示意图,并求出旗杆的高度.
如图,在四边形ABCD中,,
,DE交BC于E,交AC于F,
,
.
(1)求证:是等腰三角形;
(2)若,求△ACD的面积.
小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为
的长方形纸片,使它长宽之比为
,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.
已知:如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC.(2)试判断△OEF的形状,并说明理由.
如图,在平面直角坐标系中,函数的图象
是第一、三象限的角平分线.
实验与探究:由图观察易知A(0,2)关于直线的对称点
的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线
的对称点
、
的位置,并写出它们的坐标:
、
;
归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一,三象限的角平分线的对称点
的坐标为.
已知,如图,△AOB的OA、OB两边上的两点M、N.
①.求作:点P,使点P到OA、OB的距离相等,且PM=PN.(尺规作图,不写作法,保留作图痕迹)
②.在AB上找一点Q使四边形ONQM周长最小。(不一定尺规作图, 可以用三角尺,不写作法).