已知数列{an}中,a1=1,前n项和为Sn,对任意的n≥2,3Sn-4,an,2-总成等差数列.
(1)求a2、a3、a4的值;
(2)求通项公式an.
已知数列{an}的前n项和为Sn,满足log2(1+Sn)=n+1,求数列的通项公式.
已知在正项数列{an}中,Sn表示前n项和且2=an+1,求an.
已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n.
(1)求数列{an}的通项公式;
(2)求证:数列{an}是递减数列.
根据下面各数列前几项的值,写出数列的一个通项公式:
(1),
,
,
,
,…
(2),2,
,8,
,…
(3)5,55,555,5 555,55 555,…
(4)5,0,-5,0,5,0,-5,0,…
(5)1,3,7,15,31,…