某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(
为正整数),每个月的销售利润为
元.(14分)
(1)求与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
判断下列问题是排列问题还是组合问题?并计算出结果.
高二年级数学课外小组人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选
名参加省数学竞赛,有多少种不同的选法?
判断下列问题是排列问题还是组合问题?并计算出结果.
高三年级学生会有人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
是否存在正方形ABCD,它的对角线AC在直线x+y-2=0上,顶点B、D在抛物线y2=4x上?若存在,试求出正方形的边长;若不存在,试说明理由.
抛物线y=-与过点M(0,-1)的直线l相交于A、B两点,O为坐标原点,若直线OA和OB斜率之和为1,求直线l的方程.
已知圆C过定点A(0,p)(p>0),圆心C在抛物线x2=2py上运动,若MN为圆C在x轴上截得的弦,设|AM|=m,|AN|=n,∠MAN=θ.
(1)当点C运动时,|MN|是否变化?写出并证明你的结论?
(2)求+
的最大值,并求取得最大值时θ的值和此时圆C的方程.若不存在,说明理由