ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=。
求证:平面ACD⊥平面PAC;
求异面直线PC与BD所成角的余弦值;
设二面角A—PC—B的大小为,试求
的值。
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.
如图,在圆锥中,已知PO=
,圆O的直径AB=2,C是弧AB的中点,D为AC的中点.
(1)求异面直线PD和BC所成的角的正切值;
(2)求直线和平面
所成角的正弦值.
如图,在正方体ABCD-中,棱长为a,E为棱CC1上的的动点.
(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD.
已知某几何体的直观图和三视图如图所示,其正(主)视图为矩形,侧(左)视图为等腰直角三角形,俯视图为直角梯形.
(1)若M为CB中点,证明:MA∥平面CNB1;
(2)求这个几何体的体积.
三棱锥P—ABC中,PO⊥面ABC,垂足为O,若PA⊥BC,PC⊥AB,求证:
(1)AO⊥BC
(2)PB⊥AC