已知:如图1,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ. 若设运动的时间为t(s)( 0<t<2 ),解答下列问题:
(1)t为何值时,PQ∥BC?
(2)设△AQP的面积为(
),求
与t之间的函数关系;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图2,连接PC,并把△PQC沿QC翻折,得到四边形,那么是否存在t,使四边形
为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
已知二次函数中,其函数
与自变量
之间的部分对应值如下表所示:
x |
…… |
0 |
1 |
2 |
3 |
4 |
5 |
…… |
y |
…… |
4 |
1 |
0 |
1 |
4 |
9 |
…… |
(1)当x=-1时,y的值为;
(2)点A(,
)、B(
,
)在该函数的图象上,则当
时,
与
的大小关系是;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】
五一假期中,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行直线长跑比赛,比赛时小明的速度始终是250米/分,小亮的速度始终是300米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:
(1)请直接写出小明和小亮比赛前的速度,并说出图中点A(1,500)的实际意义;
(2)请在图中的()内填上正确的值,并求两人比赛过程中y与x之间的函数关系式;
(3)若小亮从家出门跑了11分钟时,立即按原路以比赛时的速度返回,则小亮再经过多少分钟时两人相距75米?
如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,
≈1.732).
已知关于x的一元二次方程有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由;
(3)若此方程的两个实数根的平方和为30,求实数k.
国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.某中学为了了解学生体育活动情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分.根据以上信息,解答下列问题:
(1)该校随机抽查的学生中每天在校锻炼时间超过1小时的人数是 ;
(2)请将图2补充完整;
(3)2013年该市初中毕业生约为6.4万人,请你估计今年该市初中毕业生中每天锻炼时间超过1小时的学生约有多少万人?