游客
题文

将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知向量
(I) 若,共线,求的值;
(II)若,求的值;
(III)当时,求夹角的余弦值.

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点
(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于两点,求的取值范围.

已知数列{an}满足an+1=
(Ⅰ)若方程f(x)=x的解称为函数y=f(x)的不动点,求an+1=f(an)的不动点的值;
(Ⅱ)若a1=2,bn=,求证:数列{lnbn}是等比数列,并求数列{bn}的通项.
(Ⅲ)当任意nÎN*时,求证:b1+b2+b3+…+bn<

设二次函数f(x)=mx2+nx+t的图像过原点,g(x)=ax3+bx−3(x>0),f(x), g(x)的导函数为,g¢(x),且="0," =−2,f(1)="g(1)," =g¢(1).
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求F(x)=f(x)−g(x)的极小值;
(Ⅲ)是否存在实常数k和m,使得f(x)³kx+m和g(x)£kx+m成立?若存在,求出k和m的值;若不存在,说明理由.

如图,三棱柱中,侧面底面,
,O为中点.
(Ⅰ)证明:平面
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号