如图,在正三棱柱中,
,
是
的中点,
是线段
上的动点(与端点不重合),且
.
(1)若,求证:
;
(2)若直线与平面
所成角的大小为
,求
的最大值.
(本小题满分12分)已知函数,其中
为常数,且
(1)当时,求
的单调区间;
(2)若在
处取得极值,且在
的最大值为1,求
的值.
(本小题满分12分)已知椭圆的一个顶点为,焦点在
轴上.若右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线相交于不同的两点M、N.当
时,求
的取值范围.
(本小题满分12分)已知数列的各项均为正数,观察程序框图,若
时,分别有
.
(1)试求数列的通项公式;
(2)令,求数列
的前
项和
.
(本小题满分12分)如图,四棱锥的底面是正方形,
平面
,
,
,点
是
上的点,且
.
(1)求证:对任意的,都有
.
(2)设二面角的大小为
,直线
与平面
所成的角为
,若
,求
的值.
(本小题满分12分)已知,
,且函数
(1)设方程在
内有两个零点
,求
的值;
(2)若把函数的图像向左平移
个单位,再向上平移2个单位,得函数
图像,求函数
在
上的单调增区间.