直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AB,.
(1)求证:证明:BD⊥平面PAC;
(2)求PC与平面PAB所成角的正切值.
已知等差数列的前n项和为
,
,
和
的等差中项为9.
(1)求及
;
(2)令,求数列
的前n项和
.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=bsinA-acosB.
(1)求B;
(2)若b=2,△ABC的面积为,求a,c.
已知椭圆:
的一个顶点为
,离心率为
.直线
与椭圆
交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求
的值.
等比数列的各项均为正数,且
(1)求数列的通项公式;
(2)设求数列
的前n项和.