煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A.B两厂,通过了解获得A.B两厂的有关信息如下表(表中运费栏“元/t•km”表示:每吨煤炭运送一千米所需的费用):
厂别 |
运费(元/t•km) |
路程(km) |
需求量(t) |
A |
0.45 |
200 |
不超过600 |
B |
a(a为常数) |
150 |
不超过800 |
(1)写出总运费y(元)与量x(t)之间函数关系式,写出自变量取值范围;
(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)
(乐山)如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.
(1)求CD边的长;
(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q (点Q运动到点B停止),设DP=x,四边形PQCD的面积为,求
与
的函数关系式,并求出自变量
的取值范围.
(乐山)如图,正比例函数的图象与反比例函数
的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
(乐山)已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.
(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;
(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD时,求sin∠CAB的值;
②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)
(乐山)如图1,二次函数的图象与
轴分别交于A、B两点,与
轴交于点C.若tan∠ABC=3,一元二次方程
的两根为-8、2.
(1)求二次函数的解析式;
(2)直线绕点A以AB为起始位置顺时针旋转到AC位置停止,
与线段BC交于点D,P是AD的中点.
①求点P的运动路程;
②如图2,过点D作DE垂直轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在
运动过程中,∠EPF的大小是否改变?请说明理由;
(3)在(2)的条件下,连结,求△PEF周长的最小值.
已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.